Research Progress on Data Intelligence in Al Graduate Program (Al 대학원 데이터 지능 연구 성과)

Jongwuk Lee (이종욱)

Sungkyunkwan University (성균관대)

What is Data Intelligence?

Explosive Growth of Data

Data exist everywhere!

Data Flooding and Overload

What is Data Mining (DM)?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, unknown and potentially useful) patterns or knowledge from data
- Refers to data intelligence for business/real-world objective.

5

Example: Word Association Map

• Finding relevant words for "코로나19" from a news corpus

2020년 11월 4주차 (2020.11.23 ~ 2020.11.25)

"코로나19" 감성 연관어 TOP 10

감성어 랭킹

순위	분류	키워드	건수
1	중립	확산	6,965
2	긍정	안전	5,059
3	부정	위기	2,627
4	긍정	성공하다	1,957
5	부정	힘들다	1,801
6	긍정	적극적	1,663
7	부정	우려	1,628
8	긍정	저렴하다	1,491
9	긍정	바라다	1,423
10	중립	크다	1,368

Our Achievements in Al Graduate Program

• 20+ top-tier papers were published in WWW, KDD, SIGIR, ICDM, CIKM, ACL, EMNLP, COLING, and VLDB.

Our Achievements in Al Graduate Program

Three main research topics are

Recommender Systems

Case 1: Recommender Systems

How to provide relevant items to users?

Case 1: Recommender Systems

Our Achievements in RecSys

6 papers in WWW, SIGIR, ICDM, and CIKM

- Dual Neural Personalized Ranking, WWW 2019 (SKKU)
- Collaborative Distillation for Top-N Recommendation, ICDM 2019 (SKKU)
- AR-CF: Augmenting Virtual Users and Items in Collaborative Filtering for Addressing Cold-Start Problem, SIGIR 2020 (Hanyang Univ.)
- Interest Sustainability-Aware Recommender System, ICDM 2020 (POSTECH)
- DE-RRD: A Knowledge Distillation Framework for Recommender System, CIKM 2020 (POSTECH)
- News Recommendation with Topic-Enriched Knowledge Graphs, CIKM 2020 (Yonsei Univ.)

Dual Pairwise Ranking

 Utilizing both user- and item-side pairwise rankings over a neural architecture

AR-CF with Virtual Users/Items

Adopting GANs to address the cold-start problem

Training CGANs to generate virtual users/items

Augmenting the original user-item matrix

Knowledge Distillation (KD)

 A small student model is trained to mimic a pre-trained and large teacher model.

Collaborative Distillation (CD)

Applying KD for recommender models

Distillation Experts for Compression

 Propose distillation experts (DE) to transfer latent knowledge from the teacher model.

Graph Mining

Case 2: Graph Analysis and Learning

- Finding frequent subgraphs and substructures
- Learning graph embedding
- Predicting/classifying node and edges

5B+ Web pages

6k+ proteins

Knowledge graph

Case 2: Graph Analysis and Learning

Nodes as people and edges as friendship

2.5B+ users in Facebook

Our Achievements in Graph Mining

8 papers in WWW, KDD, SIGIR, ICDM, and VLDB

- How Much and When Do We Need Higher-order Information in Hypergraphs? A Case Study on Hyperedge Prediction (WWW 2020, KAIST)
- Structural Patterns and Generative Models of Real-world Hypergraphs (KDD 2020, KAIST)
- SSumM: Sparse Summarization of Massive Graphs (KDD 2020, KAIST)
- Incremental Lossless Graph Summarization (KDD 2020, KAIST)
- Hypergraph Motifs: Concepts, Algorithms, and Discoveries (VLDB 2020, KAIST)
- Evolution of Real-world Hypergraphs: Patterns and Models without Oracles (ICDM 2020, KAIST)
- Unsupervised Differentiable Multi-aspect Network Embedding (KDD 2020, POSTECH)
- ASiNE: Adversarial Signed Network Embedding (SIGIR 2020, Hanyang Univ.)

Lossless Graph Summarization

Generating a lossless graph summarization

The initial input has 9 nodes with 10 edges.

The final output has 3 nodes with 4 edges.

Lossless Graph Summarization

- How to effectively generate a lossless graph summarization for a dynamic environment?
 - When the graphs are dynamically changed, minimizes the updates without reconstruction.
- How to efficiently summarize the graph with a given bit constraint?
 - Given: a graph G
 - Find: a summary graph \overline{G}
 - Objective: Minimize the difference between G and \overline{G} .
 - Subject to: the size of \overline{G} in bits $\leq k$.

Graph Embedding

- The similar nodes in a network have similar vector representation.
 - The similarity in the embedding space **approximates** the similarity in the original network.

Multi-aspect Graph Embedding

Signed Graph Embedding

- How to represent nodes in the embedding space?
 - Nodes with the positive edges to be close
 - Nodes with the negative edges to be distant

A theory for signed graphs

```
"A friend (+) of my friend (+) is my friend (+)"
"A friend (+) of my enemy (-) is my enemy (-)"
"An enemy (-) of my friend (+) is my enemy (-)"
"An enemy (-) of my enemy (-) is my friend (+)"
```

Text Mining and Understanding

Case 3: Text Mining and Understanding

Various NLP applications by understanding text

- Lage-scale text classification
- Reading comprehension for question answering
- Translating human language to machine language

Donald Trump criticizes Dodgers manager for bullpen moves.

Case 3: Text Mining and Understanding

- Natural language processing (NLP) lets computers to process and analyze large accounts of natural language data.
 - Human-computer interaction
 - Includes the automation of linguistic forms, activities, and methods of communication.

Our Achievements in Text Mining

9 papers in ACL, EMNLP, COLING, CIKM, and VLDB

- Adaptive Compression of Word Embeddings, ACL 2020 (Korea Univ.)
- Multi-pretraining for Large-scale Text Classification, EMNLP 2020 (Korea Univ.)
- ST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road Speed, CIKM 2020 (KAIST)
- Multi-Task Learning for Knowledge Graph Completion with Pre-trained Language Models,
 COLING 2020 (SKKU)
- Natural language to SQL: Where are we today? VLDB 2020, (POSTECH)
- Extracting Chemical-Protein Interactions via Calibrated Deep Neural Network and Self-training,
 EMNLP 2020 (GIST)
- Learning with Limited data for Multilingual Reading Comprehension, EMNLP 2019 (Yonsei Univ.)
- Less is More: Attention Supervision with Counterfactuals for Text Classification, EMNLP 2020 (Yonsei Univ.)
- Retriever-Augmented and Controllable Review Generation, COLING 2020 (Yonsei Univ.)

Word Embeddings Compression

- Word embedding compression by adaptively assigning different lengths of discrete codes
 - Using codes with a longer length for task-sensitive words

Multilingual Reading Comprehension

- Supporting question answering in a new language with limited training resources
 - Transfer labels from another language.
 - Generate labels from unlabeled data using a translator and an automatic labeling function.

NLP-to-SQL Translation

 Generating an SQL statement to answer a natural language question on a relational database

Provide a comprehensive survey for NL2SQL.

Road Traffic Speed Prediction

Self-attentional model for forecasting spatio-temporal data

